Суббота20 октября
Образование

Момент инерции маятника: определение, особенности и формула

6 октября 2018

При решении уравнений вращательного или колебательного (осциллирующего) движения необходимо знать момент инерции рассматриваемой системы. Данная статья посвящена изучению различного рода маятников и моменту инерции, которым они характеризуются.

Понятие о маятнике. Виды

Перед тем как приводить определение момента инерции маятника, необходимо рассмотреть, что собой представляет этот прибор. В физике под ним понимают абсолютно любую систему, которая может совершать колебания или вращение вокруг некоторой точки или оси под действием гравитационного поля, то есть силы тяжести. Это определение предполагает, что маятник в обязательном порядке должен обладать конечной массой, при этом центр масс системы не должен находиться в точке, через которую проходит ось вращения.

Существуют различные виды маятников. В данной статье рассмотрим только 3 из них:

  • математический, или простой;
  • физический (на примере однородного стержня);
  • маятник Обербека.

Первые два являются маятниками колебательного типа, третий - вращательного.

Вращение и момент инерции

Момент инерции двух грузов

Когда тело с некоторой массой начинает вращаться вокруг оси, то его движение принято описывать следующим уравнением:

M = I*α.

Здесь M - это суммарный, или результирующий, момент всех внешних сил, которые действуют на систему, I - ее момент инерции и α - угловое ускорение.

Момент силы M по определению - это величина, равная произведению действующей силы на плечо, которое равно расстоянию от точки приложенной силы до оси вращения.

Момент инерции - величина, характеризующая инерционные свойства системы, то есть насколько быстро ее можно раскрутить, прилагая некоторый момент M. Также I характеризует запасенную вращающейся системой кинетическую энергию. Момент инерции I для материальной точки (воображаемый объект, масса которого сосредоточена в бесконечно малом объеме пространства), совершающей круговое движение на расстоянии от оси r, можно вычислить по следующей формуле:

I = m*r2.

В общем же случае при определении I для тела произвольной формы следует пользоваться такими выражениями:

1) I = ∑mi*ri2.

2) I = ∫dm *ri2 = ρ*∫dV *ri2.

Первое равенство применяется при дискретном расположении масс в системе, второе - при непрерывном.

Из этих выражений видно, что I является функцией расстояния до оси вращения и распределения массы в системе относительно этой оси и не зависит ни от прикладываемых моментов сил M, ни от скорости вращения ω.

Видео по теме

Математический (простой) маятник

Поскольку этот вид колебательной системы является самым простым, то рассмотрим его подробнее. Маятник математический представляет собой материальную точку, которая подвешена на невесомой и нерастяжимой нити. Если эту точку отклонить слегка от положения равновесия, а затем отпустить, то она начнет совершать колебания. Также предполагается, что не существует сил трения в точке закрепления нити, и пренебрегают сопротивлением воздуха.

Как понятно из описания выше, математический маятник представляет собой идеальный случай, который не реализуется на практике. Тем не менее его изучение позволяет получить некоторые важные выводы для рассматриваемого типа движения.

Ниже на рисунке представлен этот маятник, а также обозначены действующие в системе силы при его колебании.

Математический маятник

Применяя к нему уравнение движения, получаем следующее равенство:

M = -m*g*sin(θ)*L; I = m*L2; α = d2θ/dt2 =>

=> -m*g*sin(θ)*L = m*L2*d2θ/dt2, откуда:

L *d2θ/dt2 + g*sin(θ) = 0.

Поясним некоторые моменты: момент силы от натяжения нити T (см. рис.) равен нулю, поскольку она действует непосредственно на ось; момент от силы тяжести взят со знаком минус, поскольку он направлен по часовой стрелке; L - длина нити; угловое ускорение α по определению является второй производной от угла поворота по времени либо первой производной по времени от угловой скорости ω; формула момента инерции маятника этого типа совпадает с таковой для материальной точки с массой m, находящейся от оси вращения на расстоянии L.

Полученное выше выражение можно упростить, если принять приближение: sin(θ)≈θ. Оно справедливо, когда углы колебания являются небольшими (до θ=10o ошибка не превышает 0,5 %). В этом случае получаем:

L*d2θ/dt2 + g*θ = 0.

Мы получили классическое дифференциальное уравнение (диф. ур.) второго порядка. Его решением является функция синуса:

θ = A*sin(ω*t+θ0).

Здесь A и θ0 - амплитуда колебаний и начальный угол отклонения от равновесия, соответственно. Если это решение подставить в диф. ур. выше, то можно получить угловую скорость и период колебаний:

ω = √(g/L) и T = 2*pi/ω = 2*pi*√(L/g).

Мы получили удивительный результат: период колебаний математического маятника не зависит от начальных условий (A и θ0), а также от массы m.

Поведение математического маятника впервые начал изучать Галилей. Впоследствии Гюйгенс показал возможность использования полученной формулы для определения ускорения свободного падения Земли.

Маятник Галилея

Физический маятник общего типа

Этот прибор представляет собой твердое тело произвольной формы (его масса может быть неравномерно распределена по его объему), которое совершает колебания относительно горизонтальной оси, не проходящей через центр масс тела.

При решении уравнения движения этого прибора рассматривают идеальный объект, масса которого сосредоточена в его центре тяжести. Такое предположение приводит к следующей формуле для периода его колебания:

T = 2*pi*√(Io/(m*g*h)).

Здесь h - расстояние от центра тяжести до оси вращения O, Io - момент инерции физического маятника. Заметим, что если для расчета момента силы тяжести можно воспользоваться свойством аддитивности этой величины и свести сумму всех моментов к одному, приложенному к центру тяжести, то для вычисления момента инерции Io так поступать нельзя, его следует рассчитывать с использованием общих формул, которые были приведены ранее.

Колеблющийся стержень и его момент инерции

Расчет момента инерции стержня

Представим себе, что имеется твердый стержень массой m и длиной L, который подвешен к одному из концов вертикально. Эта конструкция способна совершать колебания под действием земного притяжения.

Если применить интегрирование относительно оси к такому стержню, то можно получить, что момент инерции маятника физического указанной конструкции будет равен:

Io = m*L2/3.

Тогда его период колебаний будет равен:

T = 2*pi*√(2*L /(3*g)).

Маятник Обербека

На рисунке ниже приведен этот вид маятника.

Устройство маятника Обербека

Из рисунка видно, если подвесить груз к нити, то 4 стержня с грузами начинают вращаться с некоторым угловым ускорением.

Маятник Обербека используется для проведения лабораторных работ по физике с целью проверки уравнения вращательного движения.

Определение момента инерции маятника Обербека

Маятник Обербека

Для решения этой задачи необходимо сделать важное приближение: вес стержней и дисков, к которым подвешивается на нити перегрузок, является пренебрежимо малым по сравнению с весом одного груза m. Учитывая, что размер грузов намного меньше их расстояния до оси вращения, можно воспользоваться формулой для момента инерции материальной точки. Поскольку грузов 4 и все они имеют одинаковую массу, но расположены на разных расстояниях от оси, то получаем следующую формулу для момента инерции маятника Обербека:

I = I1+I2+I3+I4 = m*(R12+R22+R32+R42 ).

Поскольку этот маятник позволяет регулировать положение каждого груза на стержне, то его момент инерции может изменяться.

Источник: fb.ru
Похожие материалы
Релятивистский закон сложения скоростей: определение, особенности и формула Образование
Релятивистский закон сложения скоростей: определение, особенности и формула

Классическая механика, законы которой были сформулированы Ньютонов в конце XVII века, около двухсот лет считалась все объясняющей и непогрешимой. Вплоть до XIX столетия ее принципы казались всемогущими и составляли ос...

Пластовое давление: определение, особенности и формула Образование
Пластовое давление: определение, особенности и формула

В данной статье мы ознакомимся с понятием пластового давления (ПД). Здесь будут затронуты вопросы его определения и значения. Также разберем способ эксплуатации человеком. Не обойдем стороной и понятие аномального пла...

Бизнес
"Золотая акция" представляет собой... "Золотая акция": определение, особенности и требования

Этот термин не нов и в мире, и в нашей стране. Но наверняка многие сейчас впервые столкнулись с ним, до того редко слышим он в СМИ и в неспециализированных кругах, несмотря на свою важность. Поэтому нелишним будет раз...

Транзиты что такое... Транзиты: определение, особенности и интересные факты Духовное развитие
Транзиты что такое... Транзиты: определение, особенности и интересные факты

Люди, всерьез интересующиеся астрологией, часто встречаются с таким научным термином, как транзиты. Что такое это, рассмотрим в материалах нашей очередной публикации. Также вы узнаете об основных принципах предсказани...

Ментальный уровень сознания - определение, особенности и интересные факты Духовное развитие
Ментальный уровень сознания - определение, особенности и интересные факты

В этой статье выясним, что собой представляет ментальный уровень (мир мысли). В эзотерических (оккультных) учениях (нью-эйдж, теософия, герметизм) его называют объёмом (слоем) природы (мироздания), созданным из идей, ...

Юридические поступки: определение, особенности и виды. Отличие сделки от юридического поступка Закон
Юридические поступки: определение, особенности и виды. Отличие сделки от юридического поступка

В нормативных документах используются самые разные понятия. В частности, в них фигурируют такие термины, как преступления, проступки, поступки, юридические факты, правомерные действия и пр. Все эти поняти...

Что такое казна? Государственная казна: определение, особенности и источники Закон
Что такое казна? Государственная казна: определение, особенности и источники

Государственная собственность РФ отличается неоднородностью. Существует два уровня ее формирования. Первым является федеральная, а вторым – региональная собственность. Имущество может закрепляться за госпредприя...

Что такое инфекция: определение, особенности и виды Здоровье
Что такое инфекция: определение, особенности и виды

Окружающая среда наполнена огромным количеством "жителей", среди которых встречаются различные микроорганизмы: вирусы, бактерии, грибы, простейшие. Они могут жить в абсолютной гармонии с человеком (непатогенные), суще...

Основные макроэкономические тождества: описание, особенности и формулы Новости и общество
Основные макроэкономические тождества: описание, особенности и формулы

Экономика является наукой об основах эффективного производства товаров и услуг, их грамотном распределении и потреблении. Ее изучение позволяет не просто глубже разобраться в процессах, с которыми мы сталкиваемся в по...

Пристяжная лошадь: определение, особенности и интересные факты Новости и общество
Пристяжная лошадь: определение, особенности и интересные факты

Повозки, в которые запрягали лошадей, были придуманы человеком для быстрого передвижения и перевозки грузов. В эту повозку могли впрячь одного или несколько коней. С тех пор есть такое понятие, как пристяжная лошадь. ...