Вторник25 сентября
Образование

Движение вдогонку (формула). Решение задач на движение вдогонку

13 сентября 2018

Движение является способом существования всего, что человек видит вокруг себя. Поэтому задачи на перемещение разных объектов в пространстве являются типичными проблемами, которые предлагается разрешить школьникам. В данной статье подробно рассмотрим движение вдогонку и формулы, которые необходимо знать, чтобы уметь решать задачи такого типа.

Что такое движение?

Примеры движения

Перед тем, как переходить к рассмотрению формул движения вдогонку, необходимо разобраться с этим понятием подробнее.

Под движением подразумевают изменение пространственных координат объекта за определенный промежуток времени. Например, автомобиль, который движется по дороге, самолет, который летит в небесах, или кошка, бегущая по траве, - все это примеры движения.

Важно отметить, что рассматриваемый движущийся объект (автомобиль, самолет, кошка) считают безмерным, то есть его размеры не имеют совершенно никакого значения для решения проблемы, поэтому ими пренебрегают. Это своего рода математическая идеализация, или модель. Для подобного объекта существует название: материальная точка.

Движение вдогонку и его особенности

Теперь перейдем к рассмотрению популярных школьных задач на движение вдогонку и формул для него. Под этим видом движения понимают перемещение двух или более объектов в одном направлении, которые отправляются в свой путь из разных пунктов (материальные точки имеют разные начальные координаты) или/и в разное время, но из одного и того же пункта. То есть создается ситуация, при которой одна материальная точка пытается догнать другую (другие), поэтому эти задачи получили такое название.

Согласно определению, особенностями движения вдогонку являются следующие:

  • Наличие двух и более движущихся объектов. Если двигаться будет только одна материальная точка, то ей "некого" будет догонять.
  • Прямолинейное перемещение в одном направлении. То есть объекты осуществляют движение вдоль одной и той же траектории и в одном направлении. Движение навстречу друг другу не входит в число рассматриваемых задач.
  • Пункт отправления играет важную роль. Идея заключается в том, чтобы в момент начала движения объекты были разделены в пространстве. Такое разделение будет иметь место, если они стартуют в одинаковое время, но из разных пунктов или же из одного пункта, но в разное время. Старт двух материальных точек из одного пункта и в одинаковое время к задачам вдогонку не относится, поскольку в этом случае один объект будет постоянно удаляться от другого.

Видео по теме

Формулы движения вдогонку

Прямолинейное движение

В 4 классе общеобразовательной школы обычно рассматриваются подобные задачи. Это означает, что формулы, которые необходимы для решения, должны быть максимально простыми. Такому случаю удовлетворяет равномерное прямолинейное движение, в котором фигурируют три физических величины: скорость, пройденный путь и время движения:

  • Скорость - величина, показывающая расстояние, которое проходит тело за единицу времени, то есть она характеризует быстроту изменения координат материальной точки. Обозначается скорость латинской буквой V и измеряется, как правило, в метрах в секунду (м/с) или в километрах в час (км/ч).
  • Путь - это расстояние, которое проходит тело за время своего движения. Он обозначается буквой S (D) и выражается обычно в метрах или километрах.
  • Время - период движения материальной точки, который обозначается буквой T и приводится в секундах, минутах или часах.

Описав основные величины, приведем формулы движения вдогонку:

  • s = v*t;
  • v = s/t;
  • t = s/v.

Решение любой задачи рассматриваемого типа базируется на применении этих трех выражений, которые необходимо запомнить каждому школьнику.

Пример решения задачи №1

Автомобиль обгоняет грузовик

Приведем пример задачи движения вдогонку и решения (формулы, необходимые для него, приведены выше). Проблема формулируется следующим образом: "Грузовик и легковой автомобиль одновременно выезжают из пунктов A и B со скоростями 60 км/ч и 80 км/ч соответственно. Оба транспортных средства движутся в одном направлении так, что автомобиль приближается к пункту A, а грузовик удаляется от обоих пунктов. Через какое время автомобиль догонит грузовик, если расстояние между A и B составляет 40 км?".

Перед тем как решать задачу, необходимо научить ребят определять суть проблемы. В данном случае она заключается в неизвестном времени, которое проведут оба транспортных средства в пути. Предположим, что это время равно t часам. То есть через время t автомобиль догонит грузовик. Найдем это время.

Рассчитаем расстояние, которое пройдет каждый из движущихся объектов за время t, имеем: s1 = v1*t и s2 = v2*t, здесь s1, v1 = 60 км/ч и s2, v2 = 80 км/ч - пройденные пути и скорости движения грузовика и автомобиля до того момента, когда второй догонит первого. Поскольку расстояние между пунктами A и B равно 40 км, то автомобиль, догнав грузовик, пройдет путь на 40 км больше, то есть s2 - s1 = 40. Подставляя в последнее выражение формулы для путей s1 и s2, получим: v2*t - v1*t = 40 или 80*t - 60*t = 40, откуда t = 40/20 = 2 ч.

Отметим, что данный ответ можно получить, если использовать понятие скорости сближения между движущимися объектами. В задаче она равна 20 км/ч (80-60). То есть при этом подходе возникает ситуация, когда один объект движется (автомобиль), а второй относительно него стоит на месте (грузовик). Поэтому достаточно поделить расстояние между пунктами A и B на скорость сближения, чтобы решить задачу.

Пример решения задачи №2

Автомобиль обгоняет велосипедиста

Приведем еще один пример задач на движение вдогонку (формулы для решения используются те же): "Из одного пункта выезжает велосипедист, а через 3 часа в ту же сторону выезжает автомобиль. Через какое время после начала своего движения автомобиль догонит велосипедиста, если известно, что он движется в 4 раза быстрее?".

Решать эту задачу следует так же, как и предыдущую, то есть необходимо определить, какой путь пройдет каждый участник движения до момента, когда один догонит другого. Предположим, что автомобиль догнал велосипедиста через время t, тогда получаем следующие пройденные пути: s1 = v1*(t+3) и s2 = v2*t, здесь s1, v1 и s2, v2 - пути и скорости велосипедиста и автомобиля соответственно. Заметим, что до того, как автомобиль догнал велосипедиста, последний находился в пути t + 3 часа, так как он выехал на 3 часа раньше.

Зная, что оба участника отправились из одного пункта, и пройденные ими пути будут равны, получаем: s2 = s1 или v1*(t+3) = v2*t. Скорости v1 и v2 нам не известны, однако в условии задачи сказано, что v2 = 4*v1. Подставляя это выражение в формулу для равенства путей, получим: v1*(t+3) = 4*v1*t или t+3 = 4*t. Решая последнее, приходим к ответу: t = 3/3 = 1 ч.

Некоторые советы

Занятия в 4 классе

Формулы движения вдогонку являются простыми, тем не менее школьников в 4 классе важно научить мыслить логически, понимать значение величин, с которыми они имеют дело, и осознавать проблему, которая перед ними стоит. Ребят рекомендуется призывать к рассуждениям вслух, а также к командной работе. Кроме того, для наглядности задач можно использовать компьютер и проектор. Все это способствует развитию у них абстрактного мышления, коммуникативных навыков, а также математических способностей.

Источник: fb.ru
Похожие материалы
Задачи на движение как решать? Методика решения задач на движение Образование
Задачи на движение как решать? Методика решения задач на движение

Математика - довольно сложный предмет, но в школьном курсе ее придется пройти абсолютно всем. Особое затруднение у учеников вызывают задачи на движение. Как решать без проблем и массы потраченного времени, рассмотрим ...

Этапы решения задач на ЭВМ и их характеристика Технологии
Этапы решения задач на ЭВМ и их характеристика

Чтобы изучить все этапы решения задач на ЭВМ, нужно узнать все более детально. Тем, кто хотя бы имеет представление о том, что такое электронно-вычислительная машина, будет проще разобраться в этом вопросе. А вот тому...

Задача с решением по экономике. Формулы по экономике для решения задач Новости и общество
Задача с решением по экономике. Формулы по экономике для решения задач

Сегодня мы научимся решать различные задачи по экономике из разных отраслей. Материал будет полезен как тем, кто только начал изучать экономику (и даже тем, кто просто ею интересуется), так и людям, которые уже умеют ...

Задачи на растворы и методы их решения Образование
Задачи на растворы и методы их решения

Решение задач на растворы является важным разделом курса химии в современной школе. У многих ребят возникают определенные затруднения при проведении вычислений, связанные с отсутствием представлений о последовательнос...

Физический смысл производной функции. Задачи на физический смысл производной: примеры решения Образование
Физический смысл производной функции. Задачи на физический смысл производной: примеры решения

Математические задачи находят своё применение во многих науках. К таковым следует отнести не только физику, химию, технику и экономику, но также медицину, экологию и прочие дисциплины. Одним из важных понятий, которое...

Зачем нужен автомобиль? Решает ли он поставленые задачи на сегодняшний день, или добавляет новых? Автомобили
Зачем нужен автомобиль? Решает ли он поставленые задачи на сегодняшний день, или добавляет новых?

С тех пор как человечество изобрело колесо, появляются все новые и новые средства передвижения, для которых в некоторых случаях даже уже не нужно это самое колесо. Зачем нужен автомобиль в наше время?

Решение Задач, Связанных С Переездом Автомобили
Решение Задач, Связанных С Переездом

Компании, чья деятельность сопряжена с автоперевозками, очень часто осуществляют транспортировку и попутного груза. Зачастую эта часть работы становится, чуть ли не основополагающей статьей заработка. Поэтому многие ф...

Удачное решение: гадание на картах на отношения Духовное развитие
Удачное решение: гадание на картах на отношения

С давних времен и по наши дни влюбленные прибегали к гаданиям для проверки симпатии и чувств своих любимых. Это та проблема, которая была, есть и будет, она никогда не разрешится, сомнения будут брать верх над прагмат...

Метод дельфи. Организация решения задач коллективом экспертов Компьютеры
Метод дельфи. Организация решения задач коллективом экспертов

Появившись в 1950-60 годах, метод Дельфи стал удобным инструментом для осуществления прогнозов в сфере научных разработок и их влияния на стратегические принципы, используемые при ведении войны. Зачастую его называют ...

Метод Гомори. Решение задач целочисленного программирования Компьютеры
Метод Гомори. Решение задач целочисленного программирования

Масса задач экономического характера, проблем планирования и даже решение вопросов из других сфер человеческой жизнедеятельности связано с переменными, относящимися к целым числам. В результате их анализа и поиска ...