Вторник18 декабря
Образование

Абсолютная и относительная погрешность

25 апреля 2013

При любых измерениях, округлении результатов расчетов, выполнении достаточно сложных подсчетов неизбежно возникает то или иное отклонение. Для оценки такой неточности принято использовать два показателя – это абсолютная и относительная погрешность.

относительная погрешностьЕсли от точного значения числа вычесть полученный результат, то мы получим абсолютное отклонение (причем при подсчете от большего числа отнимают меньшее). Например, если округлить 1370 до 1400, то абсолютная погрешность будет равна 1400-1382 = 18. При округлении до 1380, абсолютное отклонение составит 1382-1380 = 2. Формула абсолютной погрешности имеет вид:

Δx = |x* – x|, здесь

x* - истинное значение,

x – приближенная величина.

Впрочем, для характеристики точности одного этого показателя явно недостаточно. Судите сами, если погрешность веса составляет 0,2 грамма, то при взвешивании химреактивов для микросинтеза это будет очень много, при взвешивании 200 грамм колбасы вполне нормально, а при измерении веса железнодорожного вагона она и вовсе может быть не замечена. Поэтому часто вместе с абсолютной указывается или рассчитывается также относительная погрешность. Формула данного показателя выглядит так:

δx =Δx/|x*|.

относительная погрешность формулаРассмотрим пример. Пусть общее число учеников школы равно 196. Округлим эту величину до 200.

Абсолютное отклонение составит 200 – 196 = 4. Относительная погрешность составит 4/196 или округленно, 4/196 = 2%.

Таким образом, если известно истинное значение некой величины, то относительной погрешностью принятого приближенного значения является отношение абсолютного отклонения приближенной величины к точному значению. Однако в большинстве случает выявить истинное точное значение очень проблематично, а порой и вовсе невозможно. И, следовательно, нельзя рассчитать точное значение погрешности. Тем не менее, всегда можно определить некоторое число, которое всегда будет немного больше, чем максимальная абсолютная или относительная погрешность.

Например, продавец взвешивает дыню на чашечных весах. При этом самая маленькая гиря равна 50 граммам. Весы показали 2000 грамм. Это приблизительное значение. Точный вес дыни неизвестен. Однако мы знаем, что абсолютная погрешность не может быть больше 50 грамм. Тогда относительная погрешность измерения веса не превосходит 50/2000 = 2,5%.

относительная погрешность измеренияЗначение, которое изначально больше абсолютной погрешности либо в наихудшем случае ей равное, принято называть предельной абсолютной погрешностью или же границей абсолютной погрешности. В предыдущем примере этот показатель равен 50 граммам. Аналогичным образом определяется и предельная относительная погрешность, которая в рассмотренном выше примере составила 2,5%.

Значение предельной погрешности не является строго заданным. Так, вместо 50 грамм мы вполне могли бы взять любое число, большее чем вес наименьшей гири, скажем 100 г или 150 г. Однако на практике выбирается минимальное значение. А если его удается точно определить, то оно и будет одновременно служить предельной погрешностью.

Бывает так, что абсолютная предельная погрешность не указана. Тогда следует считать, что она равна половине единицы последнего указанного разряда (если это число) или минимальной единице деления (если инструмент). К примеру, для миллиметровой линейки этот параметр равен 0,5 мм, а для приближенного числа 3,65 абсолютное предельное отклонение равно 0,005.

Источник: fb.ru
Актуально